Exogenous application of glycinebetaine increases chilling tolerance in tomato plants.

نویسندگان

  • Eung-Jun Park
  • Zoran Jeknic
  • Tony H H Chen
چکیده

Tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants are chilling sensitive, and do not naturally accumulate glycinebetaine (GB), a metabolite that functions as a stress protectant. We reported previously that exogenous GB application enhanced chilling tolerance in tomato. To understand its protective role better, we have further evaluated various parameters associated with improved tolerance. Although its effect was most pronounced in younger plants, this benefit was diminished 1 week after GB application. When administered by foliar spray, GB was readily taken up and translocated to various organs, with the highest levels being measured in meristematic tissues, including the shoot apices and flower buds. In leaves, the majority of endogenous GB was found in the cytosol; only 0.6-22.0% of the total leaf GB was localized in chloroplasts. Immediately after GB application, levels of H(2)O(2), catalase activity and expression of the catalase gene (CAT1) were all higher in GB-treated than in control plants. One day after exposure to chilling stress, the treated plants had significantly greater catalase activity and CAT1 expression, although their H(2)O(2) levels remained unchanged. During the following 2 d of this chilling treatment, GB-treated plants maintained lower H(2)O(2) levels but had higher catalase activity than the controls. These results suggest that, in addition to protecting macromolecules and membranes directly, GB-enhanced chilling tolerance may involve the induction of H(2)O(2)-mediated antioxidant mechanisms, e.g. enhanced catalase expression and catalase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage.

Tomato (Lycopersicon esculentum Mill.) plants, which normally do not accumulate glycinebetaine (GB), are susceptible to chilling stress. Exposure to temperatures below 10 degrees C causes various injuries and greatly decreases fruit set in most cultivars. We have transformed tomato (cv. Moneymaker) with a chloroplast-targeted codA gene of Arthrobacter globiformis, which encodes choline oxidase ...

متن کامل

Morpho-physiological improving effects of exogenous glycine betaine on tomato (Lycopersicum esculentum Mill.) cv. PS under drought stress conditions

Drought stress reduces the yield and production of tomato (Lycopersicum esculentum Mill.). Tomato does not naturally accumulate glycinebetaine (GB) in the cells under natural conditions. Effects of exogenous glycinebetaine on some morpho-physiological characteristics of Lycopersicum esculentum Mill. cv. PS was evaluated at different levels of drought stress. The experiment was conducted in a fa...

متن کامل

Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling

Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of ph...

متن کامل

Effect of exogenous Gama-aminobutyric acid on physiological tolerance of wheat seedlings exposed to chilling stress . Praviz Malekzadeh*, Jalil Khara and Reza Heidari

Accumulation of γ -aminobutyric acid (GABA) is associated with stress factors in plant systems. The objective of the current study was to compare GABA concentration in wheat plants under chilling stress. After 48 h treatments of seedlings under chilling stress combined stresses with and without GABA, morphological and biochemical assays were conducted. It was observed that the inhibition of see...

متن کامل

Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses.

Genetically engineered tomato (Lycopersicon esculentum) with the ability to synthesize glycinebetaine was generated by introducing the codA gene encoding choline oxidase from Arthrobacter globiformis. Integration of the codA gene in transgenic tomato plants was verified by PCR analysis and DNA blot hybridization. Transgenic expression of gene was verified by RT-PCR analysis and RNA blot hybridi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 47 6  شماره 

صفحات  -

تاریخ انتشار 2006